
Dear Reader,

welcome to my personal website — a place

where I publish random stuff that may or may

not be of interest to the general public.

This particular document is mainly an index

that points to the various things I make avail-

able on the web. You could start by reading

about some of the software I wrote; or you may

head over to the blog to see if there are any new

posts.

Frank Seifferth

frankseifferth@posteo.net

Blog / Writing 2

Software 3

Writing Utilities . . . . . . . . . . . . 3

Miscellaneous . . . . . . . . . . . . . 5

Vis Plugins . . . . . . . . . . . . . . . 9

Colophon 12

RSS Feed

updated

14 September 2024

mailto:frankseifferth@posteo.net
https://tilde.club/~seifferth/rss.xml


Chapter 1

Blog / Writing

1 June 2024

Removing Editing Restrictions from Office Docu-
ments (Paged Out, issue 4)
https://pagedout.institute/download/PagedOut_004_beta1.pdf#

page=62

18 December 2023

Creating PDF/Plain Text Polyglots with LuaLaTeX
(Paged Out, issue 3)
https://pagedout.institute/download/PagedOut_003_beta1.pdf#

page=26

12 April 2023

On why this website is a pdf file
https://tilde.club/~seifferth/blog/why-pdf/

2

https://pagedout.institute/download/PagedOut_004_beta1.pdf#page=62
https://pagedout.institute/download/PagedOut_003_beta1.pdf#page=26
https://tilde.club/~seifferth/blog/why-pdf/


Chapter 2

Software

Writing Utilities

mkpdf https://github.com/seifferth/mkpdf

Mkpdf is a wrapper around pandoc and latexmk that I use to typeset

markdown documents. It supports specifying latex templates in the

yaml frontmatter and allows to use biblatex or natbib to process

bibliographic references. It also supports the use of custom ‘magic

lines’ in the template which can be used to specify which latex

engine and bibliography package to use in combination with that

particular template.

jotter https://github.com/seifferth/jotter

Jotter is a set of scripts that bring ctags-like functionality to the

world of markdown note taking. It is mainly designed for keeping

collections of book and article excerpts organised, but also supports

the inclusion of free-form notes that do not have any associated

bibtex metadata. Jotter supports the pandoc-markdown citation

syntax (strings like ‘@reference ’) for linking notes together and

includes a number of utility scripts to provide additional features,

such as listing all note ids that match a given wildcard or looking up

all entries that reference a certain citekey.

3

https://github.com/seifferth/mkpdf
https://github.com/seifferth/jotter


SOFTWARE 4

cite https://github.com/seifferth/cite

Cite brings the most important feature of bloated and expensive ref-

erence managers to the command line — with a codebase of less

than 30 lines of rather straightforward shell script. Which is to say:

It parses bibtex files in the current directory and all parent director-

ies and then opens a fzf-based prompt for searching and selecting

citekeys. The most convenient way to use cite is to invoke it from

inside a text editor that can directly insert the selected references

(printed to stdout using the pandoc-markdown citation syntax) into

your document.

sgit https://github.com/seifferth/sgit

Sgit is a small wrapper around git that simplifies its use for version-

ing prose, where the use of atomic commits and descriptive com-

mit messages often goes against the natural way of doing things.

Sgit combines the ‘git add’ and ‘git commit’ workflow into a single

‘sgit save’ command and defaults to storing snapshots with empty

commit messages. It still creates an entirely regular git repository,

however, so the full power of git is only one letter away.

https://github.com/seifferth/cite
https://github.com/seifferth/sgit


SOFTWARE 5

Miscellaneous

unpyter https://github.com/seifferth/unpyter

While jupyter notebooks come in handy in a number of use cases,

the tooling around ‘jupyter nbconvert’ leaves something to be de-

sired. Most importantly, it does not support reliable back-and-

forth conversion between the json-based ipynb format and a more

human-friendly plain text representation. Unpyter fills this par-

ticular gap in jupyter notebook tooling by providing exactly that:

Reliable back-and-forth conversion between ipynb notebooks and

(almost) plain python files.

typewrite https://github.com/seifferth/typewrite

Have you ever felt the need to make a pdf viewer render a simple

text file? If you do your reading on an old android tablet like myself,

you just might have. Not to worry. Converting your txt file into a pdf

is as simple as running

$ typewrite input.txt output.pdf

And the best thing: Typewrite does not only create a pdf; it

creates a pdf/txt polyglot. The original text version is right there at

the top of the output file. All you need to retrieve it is to open the

pdf in a text editor.

https://github.com/seifferth/unpyter
https://github.com/seifferth/typewrite


SOFTWARE 6

dollar_templates

https://github.com/seifferth/dollar_templates

‘Dollar templates’ provides a slim (and partial, although it might

have already reached that famous 80/20 mark) reimplementation

of pandoc’s templating engine in plain python. It provides two

simple library functions for expanding pandoc-style templates from

any python project; and it may alleviate the need of adding a

massive dependency like pypandoc and the whole pandoc binary

to a project. ‘Dollar templates’ also integrates rather better with

python projects in general as it is written in plain python itself and

thus allows expanding templates without relying on temporary files

or other, evenmore involved forms of inter-process-communication.

timesheet https://github.com/seifferth/timesheet

There are probably thousands of tools for tracking working times

already. This one is mine.

While many of those existing tools are focussed on having users

enter their working times into some sort of database, however, this

one is focussed on exporting data. As such, ‘timesheet’ parses a

simple, flexible and rather human-friendly custom file format that

specifies the time when a user started or stopped working on a

specific task. The time spent is then grouped by an arbitrary set

of user-specified fields (such as day, month, year, task name, task

description, …) and is either exported as a csv-formatted table (that

could be further processed by external tools, such as csvkit’s ex-

cellent csvsql); or it is printed in a custom format using arbitrary

python format strings. The latter option even lends itself to pro-

grammatically generating shell scripts that could, for example, use

curl to post the data into an arbitrary html form.

It may also be worth noting that, unlike with a number of dif-

ferent time tracking systems, for ‘timesheet’, a task can be anything

a user wants it to be; from a fine-grained issue or user story in a

https://github.com/seifferth/dollar_templates
https://github.com/seifferth/timesheet


SOFTWARE 7

given ticketing system to a client’s name or even a simple singular

item called ‘work’. All a task needs to be a task is a unique id that

doesn’t contain any whitespace. (Tasks can still have an associated

description that may even contain whitespace, however, so not to

worry.)

ttm https://github.com/seifferth/ttm

Topic Modelling describes the process of using automated algorithms

in order to gain a high-level overview of the semantic relationships

between different texts in a possibly large text corpus under in-

vestigation. While originally proposed in Computational Linguistics,

this approach has also gained increasing popularity within Digital

Humanities and Digital Literary Studies in recent years.

TTM (short for TSV-based Topic Modelling) is a cli tool written in

python that offers a consistent interface to various topic modelling

algorithms implemented in third-party libraries. Furthermore, ttm

also features an interface to a number of evaluation metrics as well

as some functionality that can be used to generate human-friendly

descriptions of the semantic relationships encountered through

topic modelling.

In contrast to other tools that often try to offer an integrated

one-size-fits-all solution, ttm encourages a mix-and-match approach

to using the various steps of different topic modelling frameworks.

In order to provide maximum flexibility, the data is passed along

between the different steps as a tsv-formatted table, where each

row represents a document (or part of a document that has been

split into multiple pages) and where each step of the topic model-

ling process adds a new column to the dataset. This allows to easily

combine the use of ttm with other tools for investigating and trans-

forming tabular datasets, such as cut, csvkit or the visidata editor

for tabular data.

https://github.com/seifferth/ttm


SOFTWARE 8

gemdoc https://github.com/seifferth/gemdoc

Gemdoc is a command line script that can be used to create text/gem-

ini+pdf polyglot files. The format of these polyglot files is heavily

based on the techniques proposed in the more recent issues of

the lab6 zine (hosted at lab6.com/2 and lab6.com/3 via both gemini

and https). On an implementation level, gemdoc first converts the

text/gemini input into a small subset of html that is then further

processed by weasyprint. As a consequence, the layout of the pdf

representation can be freely adjusted by supplying user-specified

css stylesheets.

As a text/gemini+pdf polyglot creation tool, gemdoc supports

two main use cases. On the one hand, it can be used to download —

and possibly even to print — content hosted on any gemini capsule.

On the other hand, gemdoc can be used to create polyglot files that

can themselves be hosted both via gemini and via other network

protocols. This, in turn, might be convenient for users who want to

mirror their gemini capsules via https but who also wish to serve

the same files via both protocols.

pdfcombine https://github.com/seifferth/pdfcombine

Pdfcombine is a small command line utility that allows you to

merge arbitrary PDF pages from one or more input files into an

output file. It is basically like pdfunite, but with improved support

for specifying page ranges.

https://github.com/seifferth/gemdoc
https://github.com/seifferth/pdfcombine


SOFTWARE 9

Vis Plugins

My text editor of choice is vis (https://martanne.github.io/vis/); a

modern implementation of the well known vi text editor enhanced

with support for structural regular expressions and multiple curs-

ors. Among other niceties, vis also includes a very powerful lua api

that can be used to write custom plugins. Over time, I also wrote

a number of plugins for that text editor myself.1 These plugins are

described below.

vis-bytepos https://github.com/seifferth/vis-bytepos

The vis-bytepos plugin adds a very simple function for displaying

the current byte offset of the primary cursor when pressing ‘gi’ in

normal mode. This functionality can come in handy when editing

files in binary (or partially binary) file formats where the byte offset

is important; such as pdf files, for instance.

vis-editorconfig https://github.com/seifferth/vis-editorconfig

This plugin implements most of the functionality described at https://

editorconfig.org/. It thus allows to use ‘.editorconfig ’ files for spe-

cifying things like tab width, indentation style or the language set-

tings to use when running a spellchecker. It also implements some

of the more resource-intensive functionality as hooks that can op-

tionally be executed every time a file is saved; such as trimming

trailing whitespace from all lines or changing all newline characters

to either LF or CRLF according to the settings specified in the editor-

config profile for the file being edited.

1Furthermore, I also took over maintenance of one more plugin, vis-editorconfig,

from its original developer.

https://martanne.github.io/vis/
https://github.com/seifferth/vis-bytepos
https://github.com/seifferth/vis-editorconfig
https://editorconfig.org/
https://editorconfig.org/


SOFTWARE 10

vis-eval https://github.com/seifferth/vis-eval

The vis-eval plugin allows the evaluation of arbitrary markdown

code blocks in any file being edited with vis. This simple addition

effectively allows to turn vis from a simple text editor into a ba-

sic notebook computing environment. In essence, this plugin will

simply search for the closest code block akin to the following one

located anywhere above the primary cursor

```python

print("Hello World!")

```

Upon pressing ‘g<Enter>’, this block will be expanded with the

output produced by the specified command, which would turn the

above codeblock into something like this

```python

print("Hello World!")

```

::: {.output exit_code="0"}

Hello World!

:::

When compared to more established notebook computing en-

vironments such as jupyter, vis-eval is both very basic and very

simple. While jupyter automagically propagates the state of vari-

ables between cells, for instance, vis-eval simply invokes standard

shell commands and passes them the contents of the code block

to be evaluated on stdin. If any state is to be propagated between

code blocks with vis-eval, the programmer would usually need to

manually add the code for storing this state to or for loading it

from disk. While this might seem like a limitation in some cases, it

also greatly simplifies mixing code blocks written in different pro-

gramming languages. And when combined with interpreter com-

mands that implicitly persist state to disk by themselves — such as

https://github.com/seifferth/vis-eval


SOFTWARE 11

‘sqlite3 some.db ’, for example — the vis-eval plugin even provides

an incredibly powerful notebook computing experience out of the

box.

vis-super-shellout

https://github.com/seifferth/vis-super-shellout

The vis-super-shellout plugin provides a slightly different version

of the built-in ‘:< ’ command. Both the built-in ‘:< ’ command

and the ‘:R ’ command provided by vis-super-shellout allow adding

the output of arbitrary shell commands to the file opened in vis.

The built-in version of that command does not release stdout,

however, which makes it impossible to run interactive commands

like fzf (https://github.com/junegunn/fzf/) or cite (https://tilde.club/

~seifferth/#software:cite). The ‘:R ’ command, in contrast, allows to

run these programs without issue.

Furthermore, the ‘:R ’ command also strips a single final newline

from the output returned by the shell command if present. In my

experience, this makes it a little more convenient to use common

shell commands such as ‘date ’, which often return a single line ter-

minated by a single newline character.

vis-todo https://github.com/seifferth/vis-todo

The vis-todo plugin adds a very simple function to jump to the

next occurrence of the uppercase string ‘TODO ’ when pressing ‘gt’ in

normal mode. This can come in handy if one wants to mark specific

lines in a source file in order to quickly return to them later on.

https://github.com/seifferth/vis-super-shellout
https://github.com/junegunn/fzf/
https://tilde.club/~seifferth/#software:cite
https://tilde.club/~seifferth/#software:cite
https://github.com/seifferth/vis-todo


Colophon

The things I link to from this website are usually made available

under free copyleft licenses. For software repositories, I usually

choose the GNU General Public License version 3 or later, while

for the more literary parts, I commonly use the Creative Commons

Attribution-ShareAlike License version 4.0. If I should have forgot-

ten to add a license to any of the files or repositories linked to from

this site, feel free to dropme a note.

If you wish to redistribute this index file itself, you are also

very welcome to do so under the terms of the Creative Commons

Attribution-ShareAlike-License (CC BY-SA 4.0).

12

https://creativecommons.org/licenses/by-sa/4.0/

	Title Page
	Blog / Writing
	Software
	Writing Utilities
	mkpdf
	jotter
	cite
	sgit

	Miscellaneous
	unpyter
	typewrite
	dollar_templates
	timesheet
	ttm
	gemdoc
	pdfcombine

	Vis Plugins
	vis-bytepos
	vis-editorconfig
	vis-eval
	vis-super-shellout
	vis-todo


	Colophon

