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Abstract

It has been shown that the class of convex linear orders admits a logical limit law. We
generalize this result to the case of convex linear orders equipped with a coloring (represented
by adding a finite number of unary predicates to the language of convex linear orders).

1 Introduction

A class of structures in a logical langauge is said to admit a limit law when the probability
that a randomly selected structure of size n satisfies logical property expressed in that language
converges as n grows infinitely large. In [1], first-order logical limit laws were proven for convex
linear orders by adapting a Markov chain-style proof of Ehrenfeucht. We present a generalization
of this argument to the case of convex linear orders equipped with a coloring (henceforth, “colored
convex linear orders” or “CCLOs”). These colorings are expressed by expanding the language of
convex linear orders to include a finite number of unary predicates, each indicating the color of a
point. Every point is assigned a color, and multiple points may have the same color.

As colored and uncolored convex linear orders are very similar in structure, many of the
proofs here are straightforward adaptations of those in Section 2 of [1].

2 Preliminaries

The language of t-colored convex linear orders, where t ∈ N, is given by Lt = {<,E,C1(x), . . . , Ct(x)},
where < is a total order on points, E is an equivalence relation whose classes are <-intervals,
and C1(x), . . . , Ct(x) are unary predicates (each corresponding to a “color”). A t-colored convex
linear order (t-CCLO) is a finite Lt-structure M such that, for each point x in M, there is exactly
one 1 ≤ i ≤ t such that Ci(x) holds. Stated formally, we require that each Ci(x) satisfies:

Ci(x) ⇐⇒ ¬
t∨

1≤ℓ≤t
ℓ ̸=i

Cℓ(x)

We say that x is i-colored when Ci(x) holds.

Definition 2.1. Let •i denote the CCLO with one class, containing one i-colored point.

Definition 2.2. For CCLOs M, N, define M⊕N to be the CCLO such that N comes after M
with respect to <.

Definition 2.3. Let M be a CCLO. Define M̂i to be the CCLO obtained by adding one i-colored
point to the <-last class of M.

We will denote the empty CCLO by �O. As this structure contains no classes, �̂O
i
is not

well-defined.

Lemma 2.4. Any t-CCLO of size n can be constructed uniquely, in n steps, by applying (̂−)
i

and −⊕ •i to�O.
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Proof. We follow an inductive argument in the same spirit as Lemma 2.4 of [1]. Let N be a
CCLO of size n having t colors. If n = 1, N contains a single point having color i; this is
equivalent to�O⊕ •i.

Assume now that any CCLO of size n− 1 can be constructed from the above operations. For
some CCLO N of size n, let M denote N minus the <-last point. If the last class of N contains
exactly one i-colored point, N ≃ M⊕ •i. Otherwise, the last point of N is obtained as M̂i.

We write M ≡k N to mean structures M,N agree up to first-order sentences with a maximum
quantifier depth of k. This is equivalent to requiring that Duplicator has a winning strategy in a
length k Ehrenfeucht–Fräıssé game.

Lemma 2.5. Let M,N,M′,N′ be CCLOs with M ≡k N and M′ ≡k N′., Then, the following
are satisfied:

i M⊕M′ ≡k N⊕N′

ii M̂i ≡k N̂i

iii There exists ℓ ∈ N such that for all s, t > ℓ,⊕
s

M ≡k

⊕
t

M

Proof. Proofs of (i), (ii), and (iii) are identical to those of Lemmas 2.7, 2.8, and 2.10 respectively
in [1].

3 Constructing a Markov chain

Fix a first-order sentence φ in Lt with quantifier rank k. We associate a Markov chain Mφ to φ
in a manner similar to the uncolored case.

For a ≡k-class C, and any M ∈ C, define

C ⊕ •i := [M⊕ •i]≡k
, Ĉi :=

[
M̂i

]
≡k

As in the uncolored case, any choice of representative M will yield a ≡k-equivalent result. We
define Mφ recursively. The starting state is [�O]≡k

. There are t possible transitions out of [�O]≡k

to [•1]≡k
, . . . , [•t]≡k

. each having probability 1/t. These initial transitions move only to CCLOs

obtained from −⊕•i due to the fact that (̂�O)
i
is not well-defined. For every [M]≡k

with M ̸≃�O,

there are 2t transitions out: one to
[
M̂i

]
≡k

and another to [M⊕ •i]≡k
for each 1 ≤ i ≤ t.

Because any t-CCLO can be constructed uniquely by applying −⊕ •i and (̂−)
i
to�O in n steps,

this procedure will uniformly randomly sample all t-CCLOs having n points.
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[M⊕ •1]≡k

[•1]≡k
[M⊕ •t]≡k

[
��O
]
≡k

, [M]≡k

[•t]≡k

[
M̂1

]
≡k

[
M̂t

]
≡k

1/t

1/t

1/2t

1/2t

1/2t

1/2t· · ·

...

...

Figure 1: Diagram of Mφ with transition probabilities.

Lemma 3.1. Mφ is aperiodic for all φ.

Proof. Suppose Mφ were periodic. Then, there would exist disjoint sets of Mφ-states (≡k-classes)
P0, P1, . . . , Pd−1 for some d > 1 such that for every state in Pi, Mφ transitions to a state in Pi+1

with probability 1 (with Pd−1 transitioning to P0). Write j•i to mean
⊕

j •i. For any C ∈ P0,
C ⊕ j•i is in P0 iff d | j. But by Lemma 2.4 and Lemma 2.5, C ⊕ j•i ≡k C ⊕ (j + 1)•i for
sufficiently large j, contradicting this.

Theorem 3.2. The class of t-CCLOs admits a logical limit law.

Proof. Consider Mφ for some fixed φ. In any Mφ state (a ≡k-class) S of Mφ, either every

structure in S satisfies φ or no structures in S satisfy φ. By the definitions of −⊕ •i and (̂−)
i

for ≡k-classes, moving n steps in Mφ (starting from�O) is equivalent to uniformly randomly
selecting a CCLO of size n and taking its ≡k-class. Hence, the probability of Mφ being in a
state which satisfies φ after n steps is equal to the probability that a randomly selected CCLO of
size n satisfies φ. It is sufficient to show that the probability of Mφ being in a satisfactory state
after n steps converges as n → ∞; this follows from the fact that Mφ is finite and aperiodic.

4 Reduction to the uncolored case

We briefly note that limit laws for uncolored convex linear orders can be obtained as a special
case of 3.2. An uncolored structure may be equivalently viewed as a colored structure with
exactly one color. Hence, the relation C1(x) holds for every x, so that there is no distinction in
terms of color on the points.

We have two operations for building such structures: (̂−)
1
and −⊕ •1. These are equivalent

to the corresponding operators (̂−) and −⊕ • in Definition 2.2 and Lemma 2.4 respectively of
[1] (the subscripts are dropped hereafter). Following the procedure in 3, we construct Mφ for
first-order sentence φ as:
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[•̂]≡k
· · ·

[
��O
]
≡k

[•]≡k

[• ⊕ •]≡k
· · ·

1

1/2

1/2

The initial transition has probability 1, as there is only one way to construct • from the empty
order. From this diagram, it can be seen that moving n steps in Mφ is equivalent to moving
n− 1 steps in the Markov chain defined by [1], due to the fact that the latter is defined starting
at • rather than�O. The two Markov chains will converge to the same limiting probability as
n → ∞.
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